Forecasting Arrival Delay at Hartsfield–Jackson Atlanta International Airport ‎Using Autoregressive Fractionally Integrated Moving Average (ARFIMA)

Authors

  • Angga Pratama Magister Statistika Terapan, Universitas Padjadjaran, Indonesia
  • Kiki Amelia Magister Statistika Terapan, Universitas Padjadjaran, Indonesia
  • Gumgum Darmawan Magister Statistika Terapan, Universitas Padjadjaran, Indonesia

DOI:

https://doi.org/10.61579/future.v4i1.697

Keywords:

ARFIMA, Keterlambatan Kedatangan, Peramalan Deret Waktu, Long-Memory, Efisiensi Operasional, Hartsfield–Jackson Atlanta Airport

Abstract

Keterlambatan penerbangan merupakan salah satu tantangan utama dalam menjaga efisiensi dan kualitas ‎layanan transportasi udara. Permasalahan ini berdampak pada peningkatan biaya operasional, gangguan ‎jadwal, serta penurunan kepuasan penumpang. Bandara Hartsfield–Jackson Atlanta International (ATL) ‎memiliki peran strategis sebagai pusat lalu lintas udara domestik di Amerika Serikat dengan volume ‎penerbangan tertinggi di dunia, sehingga memerlukan sistem peramalan yang akurat untuk mendukung ‎pengambilan keputusan operasional dan pengendalian lalu lintas udara. Penelitian ini bertujuan untuk ‎meramalkan keterlambatan kedatangan pesawat menggunakan model Autoregressive Fractionally ‎Integrated Moving Average (ARFIMA) yang mampu menangkap karakteristik long-memory pada data ‎deret waktu. Data yang digunakan berupa data bulanan keterlambatan kedatangan pesawat domestik ‎menuju ATL selama periode 2019–2023. Analisis dilakukan melalui tahapan identifikasi model, estimasi ‎parameter, diagnostik residual, serta evaluasi akurasi menggunakan ukuran Mean Absolute Scaled Error ‎‎(MASE). Hasil penelitian menunjukkan bahwa model terbaik adalah ARFIMA (1, d = 0,1821, 0) dengan ‎nilai MASE sebesar 0,876, yang menandakan tingkat akurasi peramalan yang baik. Model ini terbukti ‎efektif dalam menangkap pola fluktuasi jangka panjang dan ketergantungan temporal yang tidak dapat ‎dijelaskan oleh model ARIMA konvensional. Temuan ini menunjukkan bahwa pendekatan ARFIMA dapat ‎digunakan sebagai alat bantu dalam perencanaan operasional, pengelolaan kapasitas bandara, serta ‎pengendalian lalu lintas udara, khususnya untuk bandara besar seperti ATL yang memiliki tingkat ‎kepadatan penerbangan tinggi dan kompleksitas operasional yang besar.‎

References

Aditya Dharma, I. Md. (2019). Pengembangan Buku Cerita Anak Bergambar Dengan Insersi Budaya Lokal Bali Terhadap Minat Baca Dan Sikap Siswa Kelas V Sd Kurikulum 2013. Journal for Lesson and Learning Studies, 2(1), 53–63. https://doi.org/10.23887/jlls.v2i1.17321

Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1

Beran, J. (1994). Statistics for Long-Memory Processes. Chapman & Hall.

Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: ‎Forecasting ‎and Control (5th ed.). Wiley.

Bureau of Transportation Statistics (BTS). (2023). Airline On-Time Performance Data (2019–‎‎2023). U.S. Department of Transportation. https://www.transtats.bts.gov/‎

Caporin, M., & Pres, J. (2012). Model selection and forecasting accuracy in ARFIMA ‎models. ‎Computational Statistics & Data Analysis, 56(11), 3619–3635.

Deshpande, V., & Arıkan, M. (2012). The Impact of Airline Flight Schedules on Flight Delays. Manufacturing & Service Operations Management, 14(3), 423–440. https://doi.org/10.1287/msom.1120.0379

Diebold, F. X., & Inoue, A. (2001). Long memory and regime switching. Journal of Econometrics, 105(1), 131–159. https://doi.org/10.1016/S0304-4076(01)00073-2

Kim, A. M., & Fu, Q. (2016). Supply-and-demand models for exploring relationships between smaller airports and neighboring hub airports in the U.S. Journal of Air Transport Management, 52, 67–79. https://doi.org/10.1016/j.jairtraman.2015.12.008

Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and ‎fractional differencing‎. Journal of Time Series Analysis, 1(1), 15–29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x

Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.

Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165

Jadhav, S., & Deshpande, A. (2018). Hybrid ARIMA–ARFIMA model for long-memory forecasting. Procedia Computer Science, 20(10), 334–341.

Koenker, R., & Xiao, Z. (2004). Unit Root Quantile Autoregression Inference. Journal of the American Statistical Association, 99(467), 775–787. https://doi.org/10.1198/016214504000001114

Landry, S. J., Chen, X. W., & Nof, S. Y. (2013). Dynamic taxiway management to reduce runway conflicts. Journal of Air ‎‎Transport Management, 33(1), 42–51.

Li, Y., & Zhu, Y. (2019). Hybrid ARFIMA-LSTM model for complex time series prediction. Neurocomputing, 357(2), 136–146.

Liu, H., & Chen, C. (2022). Long-memory in transport demand forecasting: Evidence from ‎high-frequency ? Data. Transportation Research Part E, 159(1).

Mendeley Data. (2023). Arrival Delay Data for Hartsfield–Jackson Atlanta International ‎Airport (ATL). Mendeley.Com. https://data.mendeley.com/datasets/j3zfnxk56h/1‎

Narayan, J., Cats, O., van Oort, N., & Hoogendoorn, S. (2020). Integrated route choice and assignment model for fixed and flexible public transport systems. Transportation Research Part C: Emerging Technologies, 115, 102631. https://doi.org/10.1016/j.trc.2020.102631

Palma, W. (2007). Long-Memory Time Series: Theory and Methods. Wiley.

Rambe, R. N. K. (2018). Penerapan Strategi Index Card Match Untuk Meningkatkan Hasil Belajar Siswa Pada Mata Pelajaran Bahasa Indonesia. Jurnal Tarbiyah : Jurnal Ilmiah Kependidikan, 25(1), 93–124. https://doi.org/10.30829/tar.v25i1.237

Raza, S., Wang, X., & Lan, Y. (2018). Long-memory time series forecasting in air transport: An ‎‎application of ARFIMA models. Journal of Advanced Transportation, 1(8), 1–10.

Rebollo, J. J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays. Transportation Research Part C: Emerging Technologies, 44, 231–241. https://doi.org/10.1016/j.trc.2014.04.007

Ryu, K., & Song, J. (2020). Forecasting air passenger demand using ARFIMA models with ‎structural ‎breaks. Journal of Air Transport Management, 89(1).

Sabzevari, A., & Wang, Z. (2021). Multiscale time series modeling with fractional ‎differencing for traffic delay prediction. Physica A: Statistical Mechanics and Its ‎Applications, 22(3).

Srivastava, A. N. ‎. (2011). Improving Air Traffic Management with a Learning Multiagent System. IEEE Intelligent Systems, 26(1), 18–21. https://doi.org/10.1109/MIS.2009.10

Tsay, R. (2005). Analysis of financial time series with long-memory properties‎. Journal ‎of Time Series Analysis‎, 26(6). https://www.scirp.org/reference/referencespapers?referenceid=2848858

Tu, Y., Ball, M. O., & Jank, W. S. (2008). Estimating Flight Departure Delay Distributions—A Statistical Approach With Long-Term Trend and Short-Term Pattern. Journal of the American Statistical Association, 103(481), 112–125. https://doi.org/10.1198/016214507000000257

Wu, L., & Law, A. M. (2019). Simulation Analysis on Flight Delay Propagation Under Different Network Configurations. IEEE Access, 8, 103236–103244. https://doi.org/10.1109/ACCESS.2020.2999098

Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514. https://doi.org/10.1016/j.ejor.2003.08.037

Zhang, Y., & Chen, Y. (2021). Combining ARFIMA and machine learning models for time series ‎‎forecasting. Expert Systems with Applications, 170(1).

Downloads

Published

2026-01-08

How to Cite

Pratama, A., Amelia, K., & Darmawan, G. (2026). Forecasting Arrival Delay at Hartsfield–Jackson Atlanta International Airport ‎Using Autoregressive Fractionally Integrated Moving Average (ARFIMA) . Future Academia : The Journal of Multidisciplinary Research on Scientific and Advanced, 4(1), 55–69. https://doi.org/10.61579/future.v4i1.697