Forecasting Arrival Delay at Hartsfield–Jackson Atlanta International Airport Using Autoregressive Fractionally Integrated Moving Average (ARFIMA)
DOI:
https://doi.org/10.61579/future.v4i1.697Keywords:
ARFIMA, Keterlambatan Kedatangan, Peramalan Deret Waktu, Long-Memory, Efisiensi Operasional, Hartsfield–Jackson Atlanta AirportAbstract
Keterlambatan penerbangan merupakan salah satu tantangan utama dalam menjaga efisiensi dan kualitas layanan transportasi udara. Permasalahan ini berdampak pada peningkatan biaya operasional, gangguan jadwal, serta penurunan kepuasan penumpang. Bandara Hartsfield–Jackson Atlanta International (ATL) memiliki peran strategis sebagai pusat lalu lintas udara domestik di Amerika Serikat dengan volume penerbangan tertinggi di dunia, sehingga memerlukan sistem peramalan yang akurat untuk mendukung pengambilan keputusan operasional dan pengendalian lalu lintas udara. Penelitian ini bertujuan untuk meramalkan keterlambatan kedatangan pesawat menggunakan model Autoregressive Fractionally Integrated Moving Average (ARFIMA) yang mampu menangkap karakteristik long-memory pada data deret waktu. Data yang digunakan berupa data bulanan keterlambatan kedatangan pesawat domestik menuju ATL selama periode 2019–2023. Analisis dilakukan melalui tahapan identifikasi model, estimasi parameter, diagnostik residual, serta evaluasi akurasi menggunakan ukuran Mean Absolute Scaled Error (MASE). Hasil penelitian menunjukkan bahwa model terbaik adalah ARFIMA (1, d = 0,1821, 0) dengan nilai MASE sebesar 0,876, yang menandakan tingkat akurasi peramalan yang baik. Model ini terbukti efektif dalam menangkap pola fluktuasi jangka panjang dan ketergantungan temporal yang tidak dapat dijelaskan oleh model ARIMA konvensional. Temuan ini menunjukkan bahwa pendekatan ARFIMA dapat digunakan sebagai alat bantu dalam perencanaan operasional, pengelolaan kapasitas bandara, serta pengendalian lalu lintas udara, khususnya untuk bandara besar seperti ATL yang memiliki tingkat kepadatan penerbangan tinggi dan kompleksitas operasional yang besar.
References
Aditya Dharma, I. Md. (2019). Pengembangan Buku Cerita Anak Bergambar Dengan Insersi Budaya Lokal Bali Terhadap Minat Baca Dan Sikap Siswa Kelas V Sd Kurikulum 2013. Journal for Lesson and Learning Studies, 2(1), 53–63. https://doi.org/10.23887/jlls.v2i1.17321
Baillie, R. T. (1996). Long memory processes and fractional integration in econometrics. Journal of Econometrics, 73(1), 5–59. https://doi.org/10.1016/0304-4076(95)01732-1
Beran, J. (1994). Statistics for Long-Memory Processes. Chapman & Hall.
Box, G. E. P., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2016). Time Series Analysis: Forecasting and Control (5th ed.). Wiley.
Bureau of Transportation Statistics (BTS). (2023). Airline On-Time Performance Data (2019–2023). U.S. Department of Transportation. https://www.transtats.bts.gov/
Caporin, M., & Pres, J. (2012). Model selection and forecasting accuracy in ARFIMA models. Computational Statistics & Data Analysis, 56(11), 3619–3635.
Deshpande, V., & Arıkan, M. (2012). The Impact of Airline Flight Schedules on Flight Delays. Manufacturing & Service Operations Management, 14(3), 423–440. https://doi.org/10.1287/msom.1120.0379
Diebold, F. X., & Inoue, A. (2001). Long memory and regime switching. Journal of Econometrics, 105(1), 131–159. https://doi.org/10.1016/S0304-4076(01)00073-2
Kim, A. M., & Fu, Q. (2016). Supply-and-demand models for exploring relationships between smaller airports and neighboring hub airports in the U.S. Journal of Air Transport Management, 52, 67–79. https://doi.org/10.1016/j.jairtraman.2015.12.008
Granger, C. W. J., & Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1(1), 15–29. https://doi.org/10.1111/j.1467-9892.1980.tb00297.x
Hamilton, J. D. (1994). Time Series Analysis. Princeton University Press.
Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
Jadhav, S., & Deshpande, A. (2018). Hybrid ARIMA–ARFIMA model for long-memory forecasting. Procedia Computer Science, 20(10), 334–341.
Koenker, R., & Xiao, Z. (2004). Unit Root Quantile Autoregression Inference. Journal of the American Statistical Association, 99(467), 775–787. https://doi.org/10.1198/016214504000001114
Landry, S. J., Chen, X. W., & Nof, S. Y. (2013). Dynamic taxiway management to reduce runway conflicts. Journal of Air Transport Management, 33(1), 42–51.
Li, Y., & Zhu, Y. (2019). Hybrid ARFIMA-LSTM model for complex time series prediction. Neurocomputing, 357(2), 136–146.
Liu, H., & Chen, C. (2022). Long-memory in transport demand forecasting: Evidence from high-frequency ? Data. Transportation Research Part E, 159(1).
Mendeley Data. (2023). Arrival Delay Data for Hartsfield–Jackson Atlanta International Airport (ATL). Mendeley.Com. https://data.mendeley.com/datasets/j3zfnxk56h/1
Narayan, J., Cats, O., van Oort, N., & Hoogendoorn, S. (2020). Integrated route choice and assignment model for fixed and flexible public transport systems. Transportation Research Part C: Emerging Technologies, 115, 102631. https://doi.org/10.1016/j.trc.2020.102631
Palma, W. (2007). Long-Memory Time Series: Theory and Methods. Wiley.
Rambe, R. N. K. (2018). Penerapan Strategi Index Card Match Untuk Meningkatkan Hasil Belajar Siswa Pada Mata Pelajaran Bahasa Indonesia. Jurnal Tarbiyah : Jurnal Ilmiah Kependidikan, 25(1), 93–124. https://doi.org/10.30829/tar.v25i1.237
Raza, S., Wang, X., & Lan, Y. (2018). Long-memory time series forecasting in air transport: An application of ARFIMA models. Journal of Advanced Transportation, 1(8), 1–10.
Rebollo, J. J., & Balakrishnan, H. (2014). Characterization and prediction of air traffic delays. Transportation Research Part C: Emerging Technologies, 44, 231–241. https://doi.org/10.1016/j.trc.2014.04.007
Ryu, K., & Song, J. (2020). Forecasting air passenger demand using ARFIMA models with structural breaks. Journal of Air Transport Management, 89(1).
Sabzevari, A., & Wang, Z. (2021). Multiscale time series modeling with fractional differencing for traffic delay prediction. Physica A: Statistical Mechanics and Its Applications, 22(3).
Srivastava, A. N. . (2011). Improving Air Traffic Management with a Learning Multiagent System. IEEE Intelligent Systems, 26(1), 18–21. https://doi.org/10.1109/MIS.2009.10
Tsay, R. (2005). Analysis of financial time series with long-memory properties. Journal of Time Series Analysis, 26(6). https://www.scirp.org/reference/referencespapers?referenceid=2848858
Tu, Y., Ball, M. O., & Jank, W. S. (2008). Estimating Flight Departure Delay Distributions—A Statistical Approach With Long-Term Trend and Short-Term Pattern. Journal of the American Statistical Association, 103(481), 112–125. https://doi.org/10.1198/016214507000000257
Wu, L., & Law, A. M. (2019). Simulation Analysis on Flight Delay Propagation Under Different Network Configurations. IEEE Access, 8, 103236–103244. https://doi.org/10.1109/ACCESS.2020.2999098
Zhang, G. P., & Qi, M. (2005). Neural network forecasting for seasonal and trend time series. European Journal of Operational Research, 160(2), 501–514. https://doi.org/10.1016/j.ejor.2003.08.037
Zhang, Y., & Chen, Y. (2021). Combining ARFIMA and machine learning models for time series forecasting. Expert Systems with Applications, 170(1).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Angga Pratama, Kiki Amelia, Gumgum Darmawan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.











