Implementasi Metode Learning Vector Quantization Untuk Klasifikasi Kesehatan Bayi Dan Ibu Hamil Berbasis Web

Authors

  • Yuni Zahara Teknik Informatika, Universitas Jabal Ghafur, Sigli
  • Husaini Teknik Informatika, Universitas Jabal Ghafur, Sigli
  • Laila Qadriah Teknik Informatika, Universitas Jabal Ghafur, Sigli

Keywords:

health, infants, pregnant women, LVQ

Abstract

Handling the delivery process by medical personnel can be used as a reference for measuring health services in an area. An indicator that needs to be considered important in maternal health services is the Maternal Mortality Rate (MMR) as well as for infants is the Infant Mortality Rate (IMR). So that there must be monitoring and special knowledge in real time for health workers in a puskesmas or village in classifying and monitoring the health development of infants and pregnant women by adopting data from Posyandu examinations carried out in the community. This is necessary for prevention, treatment and planning regarding the health of infants and pregnant women. Learning Vector Quantization (LVQ) is a pattern classification method with each output unit representing a particular category or class. Several output units should be used for each class. The weight vector to the output unit is a reference vector to a class. During training, the weights are adjusted in a supervised manner. With this classification method, it is possible to monitor the health of infants and pregnant women by monitoring indicators such as increased body weight, hormone levels, development of the pregnant mother's stomach, stable heart rate, fetal movements in the stomach, decreased baby movements before birth and so on. This system needs to be designed for this reason, namely to make it easier for midwives to monitor the health of babies and pregnant women

References

Kementerian Kesehatan bekerjasama dengan WHO, POGI, HOGSI dan PB IBI, 2018. Buku Saku Pelayanan Kesehatan Ibu di Fasilitas Kesehatan Dasar dan Rujukan Edisi Pertama. Jakarta.

Arifianto, A. J., Sarosa, M. dan Setyawati, O., 2017. Klasifikasi Stroke Berdasarkan Kelainan Patologis dengan Learning Vector Quantization. Jurnal EECCIS Vol.8 No.2.

Fausset, L.V., 2016. Fundamentals of Neural Network: Arsitecture, Algorithm, and Aplication, Prentice Hall, New Jersey.

Zakky. 2018. Pengertian bank secara umum dan menurut ahli. Yogyakarta : Mediakom.

Hamkonda dan Tairas. 2018. Pengantar klasifikasi persepuluhan dewey. Jakarta : gunung mulia,

Sulistyo-Basuki. 2016. Pengantar Ilmu Perpustakaan. Jakarta: PT Gramedia Pustaka Umum.

Suwarno. 2017. Pengetahuan dasar kepustakaan. Ghalia indonesia.

Prawirohardjo, Sarwono. 2014. Ilmu Kebidanan Sarwono Prawirohardjo. Jakarta: PT. Bina Pustaka Sarwono Prawirohardjo.

Rahmawati, A. 2019. Asuhan Keperawatan Maternitas. Yogyakarta: PT. Pustaka Baru.

Rukiyah, Dkk. 2020. Asuhan Kebidanan Kehamilan. Jakarta: Trans Info Media. Hal. 4, 25-26, 92, 112, 180-183.

Sulistyoningsih. 2011. Gizi Untuk Kesehatan Ibu dan Anak. Yogyakarta: Graha Ilmu.

Kementerian Kesehatan RI. 2018. Hasil Riset Kesehatan Dasar (Riskesdas) 2018. Jakarta: Badan Penelitian dan Pengembangan Kesehatan Kementerian RI.

Kadir. 2018. Tuntunan belajar database menggunakan MySQL. C.V. Andi Offset. Yogyakarta.

Downloads

Published

2024-06-17

How to Cite

Zahara , Y., Husaini, & Qadriah, L. (2024). Implementasi Metode Learning Vector Quantization Untuk Klasifikasi Kesehatan Bayi Dan Ibu Hamil Berbasis Web. MIKHAYLA : Journal of Advanced Research, 1(1), 28–35. Retrieved from https://ejournal.sagita.or.id/index.php/mikhayla/article/view/127